skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rao, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The HH 24 complex harbors five collimated jets emanating from a small protostellar multiple system. We have carried out a multiwavelength study of the jets, their driving sources, and the cloud core hosting the embedded stellar system, based on data from the Hubble Space Telescope, Gemini, Subaru, Apache Point Observatory 3.5 m, Karl G. Jansky Very Large Array, and Atacama Large Millimeter/submillimeter Array (ALMA) telescopes. The data show that the multiple system, SSV 63, contains at least 7 sources, ranging in mass from the hydrogen-burning limit to proto-Herbig Ae stars. The stars are in an unstable nonhierarchical configuration, and one member, a borderline brown dwarf, is moving away from the protostellar system with 25 km s−1, after being ejected ∼5800 yr ago as an orphaned protostar. Five of the embedded sources are surrounded by small, possibly truncated, disks resolved at 1.3 mm with ALMA. Proper motions and radial velocities imply jet speeds of 200–300 km s−1. The two main HH 24 jets, E and C, form a bipolar jet system that traces the innermost portions of parsec-scale chains of Herbig–Haro and H2shocks with a total extent of at least 3 pc. H2CO and C18O observations show that the core has been churned and continuously fed by an infalling streamer.13CO and12CO trace compact, low-velocity, cavity walls carved by the jets and an ultracompact molecular outflow from the most embedded object. ChaoticN-body dynamics likely will eject several more of these objects. The ejection of stars from their feeding zones sets their masses. Dynamical decay of nonhierarchical systems can thus be a major contributor to establishing the initial mass function. 
    more » « less
  2. Data literacy has taken a front seat in present day conversations on education reform primarily due to the need for education on disruptive technologies such as Artificial Intelligence and Internetof- Things that are rapidly transforming the future of work and life. School systems worldwide have already included data literacy several years ago in their curriculum, still the definition of data and the activities utilized to teach data handling are verily outdated and seek change to reflect the new relationship we are starting to form with data. This paper discusses a workshop conducted for data literacy education in schools. The hands-on activity based approach taken in the workshop seeks to offer a broad definition to data along the lines of real world application in terms of our human sensory perception of audition, vision, and haptics. 
    more » « less
  3. Context.Blazars exhibit strong variability across the entire electromagnetic spectrum, including periods of high-flux states commonly known as flares. The physical mechanisms in blazar jets responsible for flares remain poorly understood to date. Aims.Our aim is to better understand the emission mechanisms during blazar flares using X-ray polarimetry and broadband observations from the archetypical TeV blazar Mrk 421, which can be studied with higher accuracy than other blazars that are dimmer and/or located farther away. Methods.We studied a flaring activity from December 2023 that was characterized from radio to very high-energy (VHE;E > 0.1 TeV) gamma rays with MAGIC,Fermi-LAT,Swift,XMM-Newton, and several optical and radio telescopes. These observations included, for the first time for a gamma-ray flare of a blazar, simultaneous X-ray polarization measurements with IXPE, in addition to optical and radio polarimetry data. We quantify the variability and correlations among the multi-band flux and polarization measurements, and describe the varying broadband emission within a theoretical scenario constrained by the polarization data. Results.We find substantial variability in both X-rays and VHE gamma rays throughout the campaign, with the highest VHE flux above 0.2 TeV occurring during the IXPE observing window, and exceeding twice the flux of the Crab Nebula. However, the VHE and X-ray spectra are on average softer, and the correlation between these two bands is weaker than those reported in the previous flares of Mrk 421. IXPE reveals an X-ray polarization degree significantly higher than that at radio and optical frequencies, similar to previous results for Mrk 421 and other high synchrotron peaked blazars. Differently to past observations, the X-ray polarization angle varies by ∼100° on timescales of days, and the polarization degree changes by more than a factor of 4. The highest X-ray polarization degree, analyzed in 12 h time intervals, reaches 26 ± 2%, around which an X-ray counter-clockwise hysteresis loop is measured withXMM-Newton. It suggests that the X-ray emission comes from particles close to the high-energy cutoff, hence possibly probing an extreme case of the Turbulent Extreme Multi-Zone model for which the chromatic trend in the polarization may be more pronounced than theoretically predicted. We model the broadband emission with a simplified stratified jet model throughout the flare. The polarization measurements imply an electron distribution in the X-ray emitting region with a very high minimum Lorentz factor ($$ \gamma\prime_{\mathrm{min}}\gtrsim10^4 $$), which is expected in electron-ion plasma, as well as a variation of the emitting region size of up to a factor of 3 during the flaring activity. We find no correlation between the fluxes and the evolution of the model parameters, which indicates a stochastic nature of the underlying physical mechanism that likely explains the lack of a tight X-ray/VHE correlation during this flaring activity. Such behavior would be expected in a highly turbulent electron-ion plasma crossing a shock front. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Aims.We have performed the first broadband study of Mrk 421 from radio to TeV gamma rays with simultaneous measurements of the X-ray polarization from IXPE. Methods.The data were collected as part of an extensive multiwavelength campaign carried out between May and June 2022 using MAGIC,Fermi-LAT,NuSTAR,XMM-Newton,Swift, and several optical and radio telescopes to complement IXPE data. Results.During the IXPE exposures, the measured 0.2–1 TeV flux was close to the quiescent state and ranged from 25% to 50% of the Crab Nebula without intra-night variability. Throughout the campaign, the very high-energy (VHE) and X-ray emission are positively correlated at a 4σsignificance level. The IXPE measurements reveal an X-ray polarization degree that is a factor of 2–5 higher than in the optical/radio bands; that implies an energy-stratified jet in which the VHE photons are emitted co-spatially with the X-rays, in the vicinity of a shock front. The June 2022 observations exhibit a rotation of the X-ray polarization angle. Despite no simultaneous VHE coverage being available during a large fraction of the swing, theSwift-XRT monitoring reveals an X-ray flux increase with a clear spectral hardening. This suggests that flares in high synchrotron peaked blazars can be accompanied by a polarization angle rotation, as observed in some flat spectrum radio quasars. Finally, during the polarization angle rotation,NuSTARdata reveal two contiguous spectral hysteresis loops in opposite directions (clockwise and counterclockwise), implying important changes in the particle acceleration efficiency on approximately hour timescales. 
    more » « less
  5. Context.The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio toγ-ray energies) took part in the second M87 EHT campaign. Aims.The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. Methods.The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high-energy (VHE)γ-rays as well as details of the individual observations and light curves. We also conducted phenomenological modelling to investigate the basic source properties. Results.We present the first VHEγ-ray flare from M87 detected since 2010. The flux above 350 GeV more than doubled within a period of ≈36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Conclusions.Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHEγ-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and it emphasises the need for combined image and spectral modelling. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025